

Fundamentals of Accelerators - 2012 Lecture - Day 8

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana

What do we mean by radiation?

University of Ljubljand

FACULTY OF

- Applies in all inertial frames
- Carried by an electromagnetic wave
- Source of the energy
 - Motion of charges

University of Ljubljana Plii Schematic of electric field FACULTY OF φ3 02 m Q

(a) Electric Field Lines

From: T. Shintake, New Real-time Simulation Technique for Synchrotron and Undulator Radiations, Proc. LINAC 2002, Gyeongju, Korea

US PARTICLE ACCELERATOR SCHOOL

(b) Wavefronts

Static charge

Particle moving in a straight line with constant velocity

University of Ljubljana FACULTY OF ECONOMICS

0

US PARTICLE ACCELERATOR SCHOOL

E field

Consider the fields from an electron with abrupt accelerations

* At r = ct, \exists a transition region from one field to the other. At large r, the field in this layer becomes the radiation field.

Particle moving in a circle at constant speed

University of Ljubljana FACULTY OF ECONOMICS

Field energy flows to infinity

Remember that fields add, we can compute radiation from a charge twice as long

The wavelength of the radiation doubles

1417 All these radiate

Not quantitatively correct because E is a vector; But we can see that the peak field hits the observer twice as often

Current loop: No radiation

Field is static

University of Ljubljana

FACULTY OF ECONOMICS

B field

QED approach: Why do particles radiate when accelerated?

- * Charged particles in free space are "surrounded" by *virtual photons*
 - > Appear & disappear & travel with the particles.

- Acceleration separates the charge from the photons & "kicks" photons onto the "mass shell"
- Lighter particles have less inertia & radiate photons more efficiently
- In the field of the dipoles in a synchrotron, charged particles move on a curved trajectory.
 - > Transverse acceleration generates the *synchrotron radiation*

Electrons radiate $\sim \alpha \gamma$ *photons per radian of turning*

Longitudinal vs. transverse acceleration

University of Ljubljand

ECONOMICS

$$P_{\perp} = \frac{c}{6\pi\varepsilon_0} q^2 \frac{\left(\beta\gamma\right)^4}{\rho^2} \quad \rho = curvature \ radius$$

Radiated power for transverse acceleration increases dramatically with energy

Limits the maximum energy obtainable with a storage ring

Energy lost per turn by electrons

$$\frac{dU}{dt} = -P_{SR} = -\frac{2cr_e}{3(m_0c^2)^3} \frac{E^4}{\rho^2} \implies U_0 = \int_{finite \rho} P_{SR} dt \quad energy \ lost \ per \ turn$$

For relativistic electrons:

$$s = \beta ct \approx ct \Rightarrow dt = \frac{ds}{c}$$

$$U_0 = \frac{1}{c} \int_{finite \rho} P_{SR} \, ds = \frac{2r_e E_0^4}{3(m_0 c^2)^3} \int_{finite \rho} \frac{ds}{\rho^2}$$

For dipole magnets with constant radius *r* (*iso-magnetic* case):

$$U_{0} = \frac{4\pi r_{e}}{3(m_{0}c^{2})^{3}} \frac{E_{0}^{4}}{\rho} = \frac{e^{2}}{3\varepsilon_{o}} \frac{\gamma^{4}}{\rho}$$

The average radiated power is given by:

$$\langle P_{SR} \rangle = \frac{U_0}{T_0} = \frac{4\pi c r_e}{3(m_0 c^2)^3} \frac{E_0^4}{\rho L}$$

where L = ring circumference

Energy loss to synchrotron radiation (practical units)

Energy Loss per turn (per particle)

$$U_{o,electron}(keV) = \frac{e^2\gamma^4}{3\varepsilon_0\rho} = 88.46 \frac{E(GeV)^4}{\rho(m)}$$

$$U_{o,proton}(keV) = \frac{e^2\gamma^4}{3\varepsilon_0\rho} = 6.03 \frac{E(TeV)^4}{\rho(m)}$$

Power radiated by a beam of average current I_b : to be restored by RF system

$$N_{tot} = \frac{I_b \cdot T_{rev}}{e}$$

$$P_{electron}(kW) = \frac{e\gamma^4}{3\varepsilon_0\rho}I_b = 88.46\frac{E(GeV)^4I(A)}{\rho(m)}$$

$$P_{proton}(kW) = \frac{e\gamma^4}{3\varepsilon_0\rho}I_b = 6.03\frac{E(TeV)^4I(A)}{\rho(m)}$$

Power radiated by a beam of average current I_b in a dipole of length L (energy loss per second)

$$P_e(kW) = \frac{e\gamma^4}{6\pi\varepsilon_0\rho^2} LI_b = 14.08 \frac{L(m)I(A)E(GeV)^4}{\rho(m)^2}$$

Frequency spectrum

- * Radiation is emitted in a cone of angle $1/\gamma$
- Therefore the radiation that sweeps the observer is emitted by the particle during the retarded time period

$$\Delta t_{ret} \approx \frac{\rho}{\gamma c}$$

- * Assume that γ and ρ do not change appreciably during Δt .
- ✤ At the observer

$$\Delta t_{obs} = \Delta t_{ret} \frac{dt_{obs}}{dt_{ret}} = \frac{1}{\gamma^2} \Delta t_{ret}$$

• Therefore the observer sees $\Delta \omega \sim 1/\Delta t_{obs}$

$$\Delta\omega \sim \frac{c}{\rho}\gamma^3$$

Critical frequency and critical angle

$$\frac{d^{3}I}{d\Omega d\omega} = \frac{e^{2}}{16\pi^{3}\varepsilon_{0}c} \left(\frac{2\omega\rho}{3c\gamma^{2}}\right)^{2} \left(1+\gamma^{2}\theta^{2}\right)^{2} \left[K_{2/3}^{2}(\xi) + \frac{\gamma^{2}\theta^{2}}{1+\gamma^{2}\theta^{2}}K_{1/3}^{2}(\xi)\right]$$

Properties of the modified Bessel function ==> radiation intensity is negligible for x >> 1

For frequencies much larger than the critical frequency and angles much larger than the critical angle the synchrotron radiation emission is negligible

Integrate over all angles ==> Frequency distribution of radiation

The integrated spectral density up to the critical frequency contains half of the total energy radiated, the peak occurs approximately at $0.3\omega_c$

where the critical photon energy is

$$\varepsilon_c = \hbar \omega_c = \frac{3}{2} \frac{\hbar c}{\rho} \gamma^3$$

For *electrons*, the critical energy in practical units is

University *of Ljubljan* FACULTY O

CONOMIC

$$\varepsilon_c[keV] = 2.218 \frac{E[GeV]^3}{\rho[m]} = 0.665 \cdot E[GeV]^2 \cdot B[T]$$

Number of photons emitted

Since the energy lost per turn is

$$U_0 \sim \frac{e^2 \gamma^4}{\rho}$$

University of Ljubljan

CONOMIC

And average energy per photon is the

$$\left\langle \varepsilon_{\gamma} \right\rangle \approx \frac{1}{3}\varepsilon_{c} = \frac{\hbar\omega_{c}}{3} = \frac{1}{2}\frac{\hbar c}{\rho}\gamma^{3}$$

The average number of photons emitted per revolution is

$$\langle n_{\gamma} \rangle \approx 2\pi \alpha_{fine} \gamma$$

Plii -**Comparison of S.R. Characteristics**

		LEP200	LHC	SSC	HERA	VLHC
Beam particle		e+ e-	p	p	р	p
Circumference	km	26.7	26.7	82.9	6.45	95
Beam energy	TeV	0.1	7	20	0.82	50
Beam current	A	0.006	0.54	0.072	0.05	0.125
Critical energy of SR	eV	7 10 ⁵	44	284	0.34	3000
SR power (total)	kW	1.7 10 ⁴	7.5	8.8	3 10 ⁻⁴	800
Linear power density	W/m	882	0.22	0.14	8 10 ⁻⁵	4
Desorbing photons	s ⁻¹ m ⁻¹	2.4 1016	1 10 ¹⁷	6.6 10 ¹⁵	none	3 10 ¹⁶

From: O. Grobner CERN-LHC/VAC VLHC Workshop Sept. 2008

Synchrotron radiation plays a major role in electron storage ring dynamics

- Charged particles radiate when accelerated
- Transverse acceleration induces significant radiation (synchrotron radiation) while longitudinal acceleration generates negligible radiation $(1/\gamma^2)$.

RF system restores energy loss

University of Ljubljana

FACULTY OF

Particles change energy according to the phase of the field in the RF cavity

$$\Delta E = eV(t) = eV_o \sin(\omega_{RF}t)$$

For the synchronous particle

$$\Delta E = U_0 = eV_0 \sin(\varphi_s)$$

Energy loss + dispersion ==> Longitudinal (synchrotron) oscillations

Longitudinal dynamics are described by

1) ε , energy deviation, w.r.t the synchronous particle

2) τ , time delay w.r.t. the synchronous particle

$$\varepsilon' = \frac{qV_0}{L} \left[\sin(\phi_s + \omega\tau) - \sin\phi_s \right] \quad \text{and} \quad \tau' = -\frac{\alpha_c}{E_s} \varepsilon$$

Linearized equations describe elliptical phase space trajectories

Radiation damping of energy fluctuations

The derivative $\frac{dU_0}{dE}$ (> 0) is responsible for the damping of the longitudinal oscillations University of Ljubljand

ECONOMICS

Combine the two equations for (ε, τ) in a single 2nd order differential equation

$$\frac{d^{2}\varepsilon}{dt^{2}} + \frac{2}{\tau_{s}}\frac{d\varepsilon}{dt} + \omega_{s}^{2}\varepsilon = 0 \implies \varepsilon = Ae^{-t/\tau_{s}}\sin\left(\sqrt{\omega_{s}^{2} - \frac{4}{\tau_{s}^{2}}t} + \varphi\right)$$

$$\omega_{s}^{2} = \frac{\alpha e\dot{V}}{T_{0}E_{0}} \quad \text{angular synchrotron frequency}$$

$$\frac{1}{\tau_{s}} = \frac{1}{2T_{0}}\frac{dU_{0}}{dE} \quad \text{longitudinal damping time}$$

Damping times

- The energy damping time ~ the time for beam to radiate its original energy
- ✤ Typically

$$T_i = \frac{4\pi}{C_{\gamma}} \frac{R\rho}{J_i E_o^3}$$

- Where $J_e \approx 2$, $J_x \approx 1$, $J_y \approx 1$ and $C_{\gamma} = 8.9 \times 10^{-5} meter GeV^{-3}$
- Note $\Sigma J_i = 4$ (partition theorem)

Quantum Nature of Synchrotron Radiation

- Synchrotron radiation induces damping in all planes.
 - Collapse of beam to a single point is prevented by the *quantum nature of synchrotron radiation*
- Photons are randomly emitted in quanta of discrete energy
 - Every time a photon is emitted the parent electron "jumps" in energy and angle
- Radiation perturbs excites oscillations in all the planes.
 - Solutions of the second sec

Energy fluctuations

* Expected $\Delta E_{quantum}$ comes from the deviation of $\langle \mathcal{N}_{\gamma} \rangle$ emitted in one damping time, τ_E University of Ljubljand

FACULTY OF

$$< \mathscr{N}_{\gamma} > = \mathbf{n}_{\gamma} \, \boldsymbol{\tau}_{\mathrm{E}}$$
$$= \Delta < \mathscr{N}_{\gamma} > = (\mathbf{n}_{\gamma} \, \boldsymbol{\tau}_{\mathrm{E}} \,)^{1/2}$$

* The mean energy of each quantum ~ ε_{crit}

$$= > \sigma_{\varepsilon} = \varepsilon_{\rm crit} (n_{\gamma} \tau_{\rm E})^{1/2}$$

• Note that
$$n_{\gamma} = P_{\gamma} / \epsilon_{crit}$$
 and $\tau_E = E_0 / P_{\gamma}$

Therefore, ...

The quantum nature of synchrotron radiation emission generates energy fluctuations

$$\frac{\Delta E}{E} \approx \frac{\left\langle E_{crit} E_o \right\rangle^{1/2}}{E_o} \approx \frac{C_q \gamma_o^2}{J_{\varepsilon} \rho_{curv} E_o} \sim \frac{\gamma}{\rho}$$

where C_q is the Compton wavelength of the electron

$$C_q = 3.8 \times 10^{-13} \text{ m}$$

* Bunch length is set by the momentum compaction & V_{rf}

$$\sigma_z^2 = 2\pi \left(\frac{\Delta E}{E}\right) \frac{\alpha_c R E_o}{e \dot{V}}$$

Using a harmonic rf-cavity can produce shorter bunches

Schematic of radiation cooling

University of Ljubljana

Transverse cooling:

Limited by quantum excitation

Emittance and Momentum Spread

• At equilibrium the momentum spread is given by:

$$\left(\frac{\sigma_p}{p_0}\right)^2 = \frac{C_q \gamma_0^2}{J_s} \frac{\oint 1/\rho^3 \, ds}{\oint 1/\rho^2 \, ds} \quad \text{where } C_q = 3.84 \times 10^{-13} \, m$$

$$\left(\frac{\sigma_p}{p_0}\right)^2 = \frac{C_q \gamma_0^2}{J_s \rho}$$

iso - magnetic case

• For the horizontal emittance at equilibrium:

$$\varepsilon = C_q \frac{\gamma_0^2}{J_x} \frac{\oint H/\rho^3 ds}{\oint 1/\rho^2 ds} \quad \text{where:} \quad H(s) = \beta_T D'^2 + \gamma_T D^2 + 2\alpha_T DD'$$

- In the vertical plane, when no vertical bend is present, the synchrotron radiation contribution to the equilibrium emittance is very small
 - Vertical emittance is defined by machine imperfections & nonlinearities that couple the horizontal & vertical planes:

$$\varepsilon_{Y} = \frac{\kappa}{\kappa+1}\varepsilon$$
 and $\varepsilon_{X} = \frac{1}{\kappa+1}\varepsilon$ with $\kappa = coupling \ factor$
US Particle Accelerator School

Growth rate due to fluctuations (linear) = exponential damping rate due to radiation

==> equilibrium value of emittance or ΔE

$$\varepsilon_{natural} = \varepsilon_1 e^{-2t/\tau_d} + \varepsilon_{eq} \left(1 - e^{-2t/\tau_d} \right)$$

Quantum lifetime

- University of Ljubljana FACULTY OF ECONOMICS
- At a fixed observation point, transverse particle motion looks sinusoidal

$$x_T = a\sqrt{\beta_n}\sin(\omega_{\beta_n}t + \varphi) \qquad T = x, y$$

- ✤ Tunes are chosen in order to avoid resonances.
 - At a fixed azimuth, turn-after-turn a particle sweeps all possible positions within the envelope
- Photon emission randomly changes the "invariant" a
 - > Consequently changes the trajectory envelope as well.
- Cumulative photon emission can bring the envelope beyond acceptance at some azimuth
 - > The particle is lost

This mechanism is called the transverse quantum lifetime

Several time scales govern particle dynamics in storage rings

- Damping: several ms for electrons, ~ infinity for heavier particles
- Synchrotron oscillations: ~ tens of ms
- Revolution period: ~ hundreds of ns to ms
- Betatron oscillations: ~ tens of ns

Interaction of Photons with Matter

University of Ljubljana

FACULTY OF

Brightness of a Light Source

- ✤ Brightness is a principal characteristic of a particle source
 - Density of particle in the 6-D phase space
- Same definition applies to photon beams
 - Photons are bosons & the Pauli exclusion principle does not apply
 - Quantum mechanics does not limit achievable photon brightness

Spectral brightness

 Spectral brightness is that portion of the brightness lying within a relative spectral bandwidth Δω/ω:

How bright is a synchrotron light source?

Angular distribution of SR

When the electron velocity approaches the velocity of light, the emission pattern is folded sharply forward.

University of Ljubljana **Energy dependence of SR spectrum** FACULTY OF 1013 PHOTONS sec⁻¹ mrad⁻¹ mA⁻¹ (10% bandwidth)⁻¹ 15.7 **Bending Magnet** €c = 0.58 KeV 1012 SPECTRAL DISTRIBUTION OF SYNCHROTRON RADIATION 2.5 3.0 3.5 4.0 4.5 FROM SPEAR ($\rho = 12.7 \text{ m}$) 2.0 $E_e = 1.5 \text{ GeV}$ 1011 1010 0.001 0.01 100 0.1 10 PHOTON ENERGY (KeV)

Spectrum available using SR

University of Ljubljana

FACULTY OF

Two ways to produce radiation fromrelativistic electrons

Synchrotron radiation

- 10¹⁰ brighter than the most powerful (compact) laboratory source
- An x-ray "light bulb" in that it radiates all "colors" (wavelengths, photons energies)

University of Ljubljan FACULTY O ECONOMIC

- Lasers exist for the IR, visible, UV, VUV, and EUV
- Undulator radiation is quasimonochromatic and highly directional, approximating many of the desired properties of an x-ray laser

Relativistic electrons radiate in a narrow cone

University of Ljubljanu FACULTY OF

Third generation light sources have long straight sections and bright e-beams

Modern Synchrotron Radiation Facility کرج

- Many straight sections for undulators and wigglers
- Brighter radiation for spatially resolved studies (smaller beam more suitable for microscopies)
- Interesting coherence properties at very short wavelengths

Light sources provide three types of SR

University of Ljubljana

FACULTY OF

Bend magnet radiation

 $E_c(\text{keV}) = 0.6650E_e^2(\text{GeV})B(\text{T})$

- ✤ Advantages:
 - Broad spectral range
 - ➤ Least expensive
 - Most accessible
 - Many beamlines

Disadvantages:

- Limit coverage of hard X-rays
- Not as bright at undulator radiation

For brighter X-rays add the radiation from many small bends

Undulator radiation: What is λ_{rad} ?

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

University of Ljubljan

FACULTY OF

Power in the central cone of undulator radiation

Spatial coherence of undulator radiation

The Transition from Undulator Radiation (K \leq 1) to Wiggler Radiation (K >> 1)

Professor David Attwood Univ. California, Berkeley

CH05_F30_32VG #

Characteristics of wiggler radiation

- ✤ For K >> 1, the radiation appears in high harmonics, and at rather large horizontal angles θ = ±K/γ
 - One tends to use larger collection angles, which tends to spectrally merge nearby harmonics.

University of Ljubljand

CONOMICS

- Continuum at high photon energies, similar bend magnet radiation,
 - Increased by 2N (the number of magnet pole pieces).

X-ray beamlines transport the photons to the sample

University of Ljubljana FACULTY OF ECONOMICS

A Typical Beamline: Monochromator Plus Focusing Optics

University of Ljubljana FACULTY OF ECONOMICS

To get brighter beams we need another great invention

Physics basis: Bunched electrons radiate coherently

University of Ljubljan

ACULTY O CONOMIC

STARTMIDDLEENDMiddey's discovery: the bunching can be self-induced!

Coherent emission ==> Free Electron Laser

University of Ljubljana

FACULTY OF

Manipulate electrons in longitudinal phase space via interaction with laser in wiggler

Electron trajectory through wiggler with two periods

Fundamental FEL physics

✤ Electrons see a potential

$$V(x) \sim |A| \left(1 - \cos(x + \varphi)\right)$$

University of Ljublja

CONOMIC

where

$$A \propto B_{w} \lambda_{w} E_{laser}$$

and φ is the phase between the electrons and the laser field

- Imagine an electron part way up the potential well but falling toward the potential minimum at $\theta = 0$
 - Energy radiated by the electron increases the laser field and consequently lowers the minimum further.
 - > Electrons moving up the potential well decrease the laser field

The equations of motion

The electrons move according to the pendulum equation

$$\frac{d^2x}{dt^2} = |A|\sin(x+\varphi)$$

The field varies as

$$\frac{dA}{dt} = -J\left\langle e^{-ix} \right\rangle$$

where
$$x = (k_w - k) z - \omega t$$

The simulation will show us the bunching and signal growth

DownLoad: FELOde.zip

Resonance condition:

Slip one optical period per wiggler period

FEL bunches beam on an optical wavelength at ALL harmonics Bonifacio et al. NIM A293, Aug. 1990

- $\begin{array}{l} Gain-bandwidth \ \& \ efficiency \sim \rho \\ Gain \ induces \ \Delta E \sim \rho \end{array} \end{array}$
- 1) Emittance constraint

Match beam phase area to diffraction limited optical beam

- 2) Energy spread condition Keep electrons from debunching
- 3) Gain must be faster than diffraction

$$\rho = \frac{1}{\gamma} \left(\frac{a_{\rm w} \, \omega_{\rm p}}{4 \, c \, k_{\rm w}} \right)^{2/3} \propto \frac{I^{1/3} B^{2/3} \lambda_{\rm w}^{4/3}}{\gamma}$$

Harmonic Bunching vs. Z

FOM 1 from condensed matter studies: Light source brilliance v. photon energy

University of Ljubljana

ECONOMICS

Near term: x-rays from betatron motion and Thomson scattering

Betatron oscillations:

University of Ljubljana

FACULTY OF

Strength parameter Betatron: $a_{\beta} = \pi (2\gamma)^{1/2} r_{\beta} / \lambda_{p}$ Thomson scattering: $a_{0} = e/mc^{2}A$

Radiation pulse duration = bunch duration

